кабели и пассивное ОБОРУДОВАНИЕ

ОЦЕНКА РАБОЧЕЙ ЕМКОСТИ

симметричных кабелей с пленко-пористо-пленочной полиэтиленовой изоляцией

В.В.Баннов, к.т.н., заместитель генерального директора – технический директор АО "Самарская кабельная компания",
 Б.В.Попов, к.т.н., профессор ПГУТИ,
 В.Б.Попов, к.т.н., профессор ПГУТИ / inkat@inbox.ru

УДК 679.746.52, DOI: 10.22184/2070-8963.2023.109.1.32.35

Показано, что для управления непрерывными процессами наложения изоляции на токопроводящую медную жилу для каждого типа симметричного кабеля нужно определять величину погонной емкости изолированной жилы. Для этого в работе получено аналитическое выражение рабочей емкости, позволяющее определять величину погонной емкости кабельной пары с пленко-пористо-пленочной полиэтиленовой изоляцией жил. На основе проведенных исследований даны практические рекомендации по настройке системы автоматического регулирования погонной емкости при наложении изоляции на экструзионной линии.

Постановка задачи

Несмотря на широкое применение на сетях связи России оптических кабелей телеком-операторы не прекращают прокладку кабелей связи с медными жилами. Эти кабели используются для ремонта действующих линий связи, а в некоторых случаях и для строительства новых. Они находят применение и на ведомственных сетях связи.

В АО "Самарская кабельная компания" (СКК) разработан и выпускается спектр симметричных кабелей с наиболее совершенной на сегодняшний день пленко-пористо-пленочной полиэтиленовой изоляцией. Это высокочастотные кабели четверочной скрутки, специализированные кабели для сетей ШПД емкостью от 5 до 100 пар, телефонные кабели емкостью от 5 до 1200 пар с диаметром медных жил 0,4 и 0,5 мм. С формальной точки зрения телефонные кабели относятся к низкочастотным, однако в СКК они изготавливаются на практике по технологии высокочастотных. Так, по характеристикам взаимных электромагнитных влияний они отвечают требованиям к LAN-кабелям категории 3, а по низкочастотным характеристикам – даже категории 5е [1].

Качество передачи по кабелям связи в основном определяется вторичными параметрами передачи и взаимного влияния, которые, в свою очередь, определяются первичными параметрами и в значительной мере зависят от степени однородности кабеля и в первую очередь однородности изолированных жил. Поэтому для всех указанных выше кабелей изготовление изолированных жил производится на экструзионных линиях, оснащенных приборами контроля погонной емкости, диаметра и эксцентриситета. Измерители погонной емкости и диаметра включены в систему автоматического регулирования линии и обеспечивают заданные требования к изолированной жиле, в том числе по емкости, диаметру, толщине изоляции, концентричности.

Из первичных параметров передачи кабелей связи наиболее чувствительным к геометрической и диэлектрической неоднородности изолированной жилы является рабочая емкость С. Поэтому при рассмотрении задач управления непрерывными процессами наложения изоляции на токопроводящую жилу прибегают к анализу рабочей емкости и диэлектрической проницаемости изоляции [2–4]. И здесь для каждой конструкции кабеля нужно определять величину погонной емкости изолированной жилы. Для этого следует проводить оценку рабочей емкости кабельной пары с пленко-пористо-пленочной полиэтиленовой изоляцией. Этому вопросу и посвящена настоящая статья.

Определение рабочей емкости кабельной пары с пленко-пористо-пленочной полиэтиленовой изоляцией

В работе [4] рассмотрена задача управления технологическим процессом наложения изоляции на медную жилу витой пары симметричного радиочастотного кабеля через параметры рабочей емкости С, эквивалентной диэлектрической проницаемости є_{экв} и диаметров изоляции жил рабочей пары (рис.1), и оценка этих параметров, полученных с помощью конформных преобразований:

$$C = \frac{\pi\epsilon_{0}\epsilon_{1}\epsilon_{2}\epsilon\left[D_{\mu_{2}}(D_{\mu_{1}}-d)(D_{\mu_{2}}+d)+\right.}{ln\left(\sqrt{\frac{(D_{\mu_{1}}+D_{\mu_{2}})^{2}}{4d^{2}}-1+\frac{D_{\mu_{1}}+D_{\mu_{2}}}{2d}}\right)\left[\epsilon_{2}\epsilon D_{\mu_{2}}(D_{\mu_{1}}-d)(D_{\mu_{2}}+d)+\right.} (1)$$

$$\frac{+D_{\mu_{1}}(D_{\mu_{2}}-d)(D_{\mu_{1}}+d)+(D_{\mu_{1}}+D_{\mu_{2}})(D_{\mu_{1}}+d)(D_{\mu_{2}}+d)]}{+\epsilon_{1}\epsilon D_{\mu_{1}}(D_{\mu_{2}}-d)(D_{\mu_{1}}+d)+\epsilon_{1}\epsilon_{2}(D_{\mu_{1}}+D_{\mu_{2}})(D_{\mu_{1}}+d)(D_{\mu_{2}}+d)]},$$

D_{и1}, D_{и2} – соответствующие диаметры изоляций жил;

ε₁, ε₂ – соответствующие диэлектрические проницаемости изоляций жил кабеля;

ε – диэлектрическая проницаемость
 среды между изолированными жилами
 кабеля и внешним защитным покровом или экраном;

ε₀ - диэлектрическая постоянная.

При этом параметр рабочей емкости рассматривается как постоянная и нормируемая величина, а эквивалентная диэлектрическая проницаемость и диаметры изолированных жил как регулируемый параметр. Выражения (1) и (2) показывают зависимость рабочей емкости от геометрических размеров и диэлектрических параметров изолированных жил, однако они характеризуют упрощенную модель рабочей пары, имеющую только один слой изоляции токопроводящих жил. Также в данных выражениях не отражено влияние скрутки и экрана на величину рабочей емкости кабеля. Кроме того, эти выражения весьма громоздки и их сложно применить в практических целях.

Рассмотрим рабочую пару с трехслойной пленкопористо-пленочной изоляцией, жилы которой имеют два защитных диэлектрических слоя из сплошного полиэтилена, между которыми находится вспененный изоляционный слой (рис.2). На рисунке приняты обозначения: D_{и1}, D_{и2} – соответствующие диаметры изоляций медных жил; D – расстояние между центрами жил; а₁, а₂ – соответствующие диаметры первого защитного слоя жилы; b₁, b₂ – соответствующие диаметры вспененного слоя диэлектрика.

Уточним, что на рис.1 и 2 показаны наименьший и наибольший диаметры изолированных жил рабочей пары, что упрощает анализ степени изменения погонной емкости изолированной жилы.

Для применения выражений (1) и (2) к модели кабеля с поперечным сечением, которое представлено на рис.2, необходимо определить соответствующие диэлектрические проницаемости ε_1 , ε_2 изоляций жил кабеля. Они могут оцениваться с помощью средневзвешенного значения диэлектрических проницаемостей изоляций защитных слоев и основной вспененной изоляции ε'_1 , ε''_1 , ε''_2 , ε''_2 , ε''_2 (соответствующие диэлектрические проницаемости изоляций двух жил) и их площади поперечных сечений [5].

Для изоляции первой жилы обозначим через S₁ площадь первой защитной изоляции медной

Рис.1. Сечение рабочей пары симметричного кабеля с однослойной пористой изоляцией

Рис.2. Сечение рабочей пары симметричного кабеля с трехслойной пленко-пористо-пленочной изоляцией

жилы (с наименьшим диаметром), S₁['] – площадь основной вспененной изоляции, S₁^{'''} – площадь внешней защитной изоляции жилы (с наибольшим диаметром). Аналогично обозначим для второй жилы: S₁['], S₁^{''}, Данные площади можно вычислить по следующим формулам:

$$S_1' = \frac{\pi}{4} (a_1^2 - d^2), \tag{3}$$

$$S_1'' = \frac{\pi}{4} (b_1^2 - a_1^2), \qquad (4)$$

$$S_1''' = \frac{\pi}{4} (D_{\mu_1}^2 - b_1^2), \tag{5}$$

$$S_2' = \frac{\pi}{4} (a_2^2 - d^2), \tag{6}$$

$$S_2'' = \frac{\pi}{4} (b_2^2 - a_2^2), \tag{7}$$

$$S_2''' = \frac{\pi}{4} (D_{\mu_2}^2 - b_2^2).$$
 (8)

Средневзвешенное значение для ϵ_1 , ϵ_2 можно найти по выражениям:

$$\varepsilon_{1} = \frac{\varepsilon_{1}' \cdot S_{1}' + \varepsilon_{1}'' \cdot S_{1}'' + \varepsilon_{1}''' \cdot S_{1}''}{S_{1}' + S_{1}'' + S_{1}'''},$$
(9)

$$\varepsilon_{2} = \frac{\varepsilon_{2}' \cdot S_{2}' + \varepsilon_{2}'' \cdot S_{2}'' + \varepsilon_{2}''' \cdot S_{2}''}{S_{2}' + S_{2}'' + S_{2}'''}.$$
 (10)

Подставив выражения (3)-(8) в (9) и (10), получим:

$$\varepsilon_{1} = \frac{\varepsilon_{1}' \cdot (a_{1}^{2} - d^{2}) + \varepsilon_{1}'' \cdot (b_{1}^{2} - a_{1}^{2}) + \varepsilon_{1}''' \cdot (D_{\mu_{1}}^{2} - b_{1}^{2})}{D_{\mu_{1}}^{2} - d^{2}}, \quad (11)$$

$$\epsilon_{2} = \frac{\epsilon_{2}' \cdot (a_{2}^{2} - d^{2}) + \epsilon_{2}'' \cdot (b_{2}^{2} - a_{2}^{2}) + \epsilon_{2}''' \cdot (D_{\mu_{2}}^{2} - b_{2}^{2})}{D_{\mu_{2}}^{2} - d^{2}}.$$
 (12)

Для медной пары экранированного кабеля выражение (1) нужно дополнить коэффициентом, характеризующим удаление цепи от заземленного экрана ψ и коэффициентом укрутки k_y[6]:

$$\psi = \frac{D_3^2 - d^2}{D_3^2 + d^2},\tag{13}$$

где D_э – диаметр экрана.

Коэффициент укрутки зависит от кратности шага скрутки. Зависимость эта определяется из рассмотрения развертки на плоскость одного из элементов скрутки и записывается в виде:

$$k_y = \sqrt{1 + \frac{\pi^2}{m_T^2}},$$
 (14)

где m_т – кратность шага скрутки,

или

$$k_{y} = \frac{l_{w}}{l_{x}},$$
(15)

С учетом (2), (13)–(15) выражение (1) после проведенных преобразований принимает вид:

$$C = k_{y} \frac{\pi \varepsilon_{0} \varepsilon_{_{3KB}}}{\ln \left(\left[\sqrt{\frac{\left(D_{\mu_{1}} + D_{\mu_{2}}\right)^{2}}{4d^{2}} - 1} + \frac{D_{\mu_{1}} + D_{\mu_{2}}}{2d} \right] \psi \right)}.$$
 (16)

Таким образом, получено достаточно простое выражение для рабочей емкости кабельной пары с пленкопористо-пленочной изоляцией в зависимости от геометрических и диэлектрических параметров кабеля. Выражение (16) позволяет оценивать характер зависимости между регулируемыми параметрами: диаметром изолированной жилы и эквивалентной диэлектрической проницаемостью изоляции в технологическом процессе ее наложения на медную жилу при нормируемом параметре рабочей емкости.

Используя полученные выражения (11), (12), (16), а также выражение (2) [3], задавшись нормируемой величиной рабочей емкости и диаметром медной жилы, можно определить $\varepsilon_{3 \kappa B}$ пленко-пористо-пленочной изоляции и номинальный диаметр изолированной жилы. После этого можно рассчитать номинальную величину погонной емкости изолированной жилы по формуле:

$$C_{\text{nor}} = \frac{\varepsilon_{\text{3KB} \text{X}} \cdot 10^{-6}}{18 \cdot \ln \frac{D_{\mu}}{d}}, \Phi / \text{KM}.$$

Определенную таким образом номинальную величину погонной емкости можно брать за основу при настройке системы автоматического регулирования погонной емкости при наложении пленкопористо-пленочной изоляции на экструзионной линии. Например, для кабеля ШПД с пленкопористо-пленочной изоляцией и диаметром медных жил 0,5 мм номинальное значение погонной емкости изолированной жилы С_{пог} составляет:

- 180 пФ/м при D_u = 0,88 мм (жила для кабеля без гидрофобного заполнения);
- 125 пФ/м при D_u = 1,06 мм (жила для кабеля с гидрофобным заполнением или водоблокирующими материалами).

<u>ЛИТЕРАТУРА</u>

- 1. Баннов В.В., Смирнова В.В., Сабиров Р.Н., Попов Б.В., Попов В.Б. Электрические характеристики телефонных кабелей с пленко-пористо-пленочной полиэтиленовой изоляцией в широком диапазоне частот // Кабели и провода. 2022. № 2. С. 3-7.
- Митрошин В.Н. Автоматизация технологических процессов производства кабелей связи. М.: Машиностроение, 2006. 140 с.
- Чостковский Б.К. Методы и системы оптимального управления технологическими процессами производства кабелей связи. М.: Машиностроение, 2009. 190 с.
- Чостковский Б.К., Смородинов Д.А. Математическая модель витой пары радиочастотного кабеля объекта управления // Вестник Самарского государственного технического университета. 2008. Вып. 1. С. 113-119.
- Баннов В.В. Разработка и исследование кабеля с пленко-пористо-пленочной изоляцией для широкополосного абонентского доступа: дис. ... канд. техн. наук. М., 2010. 149 с.
- Власов В.Е., Парфенов Ю.А. Кабели цифровых сетей электросвязи. Конструирование, технологии, применение. М.: Эко-Трендз, 2005. 216 с.

